Package: bayesMRM 2.4.0
bayesMRM: Bayesian Multivariate Receptor Modeling
Bayesian analysis of multivariate receptor modeling. The package consists of implementations of the methods of Park and Oh (2015) <doi:10.1016/j.chemolab.2015.08.021>.The package uses 'JAGS'(Just Another Gibbs Sampler) to generate Markov chain Monte Carlo samples of parameters.
Authors:
bayesMRM_2.4.0.tar.gz
bayesMRM_2.4.0.zip(r-4.5)bayesMRM_2.4.0.zip(r-4.4)bayesMRM_2.4.0.zip(r-4.3)
bayesMRM_2.4.0.tgz(r-4.4-any)bayesMRM_2.4.0.tgz(r-4.3-any)
bayesMRM_2.4.0.tar.gz(r-4.5-noble)bayesMRM_2.4.0.tar.gz(r-4.4-noble)
bayesMRM_2.4.0.tgz(r-4.4-emscripten)bayesMRM_2.4.0.tgz(r-4.3-emscripten)
bayesMRM.pdf |bayesMRM.html✨
bayesMRM/json (API)
# Install 'bayesMRM' in R: |
install.packages('bayesMRM', repos = c('https://mansukoh.r-universe.dev', 'https://cloud.r-project.org')) |
- Elpaso - PM2.5 speciation data from El Paso, Texas, USA.
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:1282e61a92. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 16 2024 |
R-4.5-win | OK | Nov 16 2024 |
R-4.5-linux | OK | Nov 16 2024 |
R-4.4-win | OK | Nov 16 2024 |
R-4.4-mac | OK | Nov 16 2024 |
R-4.3-win | OK | Nov 16 2024 |
R-4.3-mac | OK | Nov 16 2024 |
Exports:bayesMRMAppbmrmconvdiag_bmrmpcplottrace_ACF_plot
Dependencies:base64encbslibcachemclicodacolorspacecommonmarkcrayondigestevaluatefansifarverfastmapfontawesomefsggplot2gluegridExtragtablehighrhtmltoolshtmlwidgetshttpuvisobandjquerylibjsonliteknitrlabelinglaterlatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmepillarpkgconfigpromisesR6rappdirsRColorBrewerRcpprglrjagsrlangrmarkdownsassscalesshinyshinythemessourcetoolstibbletinytexutf8vctrsviridisLitewithrxfunxtableyaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Shiny App for exploring the results of Bayesian multivariate receptor modeling | bayesMRMApp |
Bayesian Analysis of Multivariate Receptor Modeling | bmrm |
Convergence Diagnostics on MCMC samples in 'bmrm' | convdiag_bmrm |
PM2.5 speciation data from El Paso, Texas, USA. | Elpaso |
Check the identifiability conditions | idCond_check idcond_check |
Principal component plot | pcplot |
Produce plots of the parameter estimates | plot plot.bmrm |
Summarize the output of the 'bmrm' function | summary summary.bmrm |
Trace and/or ACF plots of elements of a variable in 'bmrm' object | trace_ACF_plot |